RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2004 Volume 68, Issue 6, Pages 3–60 (Mi im509)

This article is cited in 65 papers

Continuity at boundary points of solutions of quasilinear elliptic equations with a non-standard growth condition

Yu. A. Alkhutov, O. V. Krasheninnikova


Abstract: We study the behaviour at boundary points of a solution of the Dirichlet problem with continuous boundary function for the Euler equation generated by the Lagrangian $|\nabla u|^{p(x)}/p(x)$ with variable$p=p(x)$ that has logarithmic modulus of continuity and satisfies the condition $1<p_1\leqslant p(x)\leqslant p_2<\infty$. We obtain a regularity criterion for a boundary point of Wiener type, an estimate for the modulus of continuity of the solution near a regular boundary point, and geometric conditions for regularity.

UDC: 517.946

MSC: 35J60, 35B45, 35B65, 35J99, 35J67, 46E35, 49J45, 49N15, 54A20

Received: 25.02.2004

DOI: 10.4213/im509


 English version:
Izvestiya: Mathematics, 2004, 68:6, 1063–1117

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025