RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2004 Volume 68, Issue 6, Pages 105–118 (Mi im514)

This article is cited in 8 papers

$C^1$-extension of subharmonic functions from closed Jordan domains in $\mathbb R^2$

M. S. Mel'nikova, P. V. Paramonovb

a Universitat Autònoma de Barcelona
b M. V. Lomonosov Moscow State University

Abstract: For Jordan domains $D$ in $\mathbb R^2$ of Dini–Lyapunov type, we show that any function subharmonic in $D$ and of class $C^1(\overline D)$ can be extended to a function subharmonic and of class $C^1$ on the whole of $\mathbb R^2$ with a uniform estimate of its gradient. We construct a large class of Jordan domains (including domains with $C^1$-smooth boundaries) for which this extension property fails. We also prove a localization theorem on $C^1$-subharmonic extension from any closed Jordan domain.

UDC: 517.5

MSC: 31A05, 41A30

Received: 11.05.2004

DOI: 10.4213/im514


 English version:
Izvestiya: Mathematics, 2004, 68:6, 1165–1178

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024