RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1994 Volume 58, Issue 6, Pages 123–136 (Mi im527)

This article is cited in 2 papers

Nonharmonic Fourier series without the Riemann–Lebesgue property

A. M. Sedletskii


Abstract: We prove that in the class of separated sequences $\lambda_n$ there exists a sequence whose real parts decrease arbitrarily slowly to $-\infty$, so that for some continuous function $f$ on $[0,1]$ the general term of the nonharmonic Fourier series $f(t)\sim\sum c_ne^{\lambda_nt}$ diverges to infinity as $n=n_k\to\infty$ for all $t\in(0,1)$.

UDC: 517.512.2

MSC: Primary 42C15; Secondary 42A16

Received: 22.03.1993


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 45:3, 545–557

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024