RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2007 Volume 71, Issue 3, Pages 197–224 (Mi im550)

This article is cited in 15 papers

Monoidal transformations and conjectures on algebraic cycles

S. G. Tankeev

Vladimir State University

Abstract: We consider the following conjectures: $\operatorname{Hodge}(X)$, $\operatorname{Tate}(X)$ (over a perfect finitely generated field), Grothendieck's standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the Hodge operator $\ast$, conjecture $D(X)$ on the coincidence of the numerical and homological equivalences of algebraic cycles and conjecture $C(X)$ on the algebraicity of Künneth components of the diagonal for smooth complex projective varieties. We show that they are compatible with monoidal transformations: if one of them holds for a smooth projective variety $X$ and a smooth closed subvariety $Y\hookrightarrow X$, then it holds for $X'$, where $f\colon X'\to X$ is the blow up of $X$ along $Y$. All of these conjectures are reduced to the case of rational varieties.

UDC: 512.6

MSC: 14C25, 14F99

Received: 05.10.2004

DOI: 10.4213/im550


 English version:
Izvestiya: Mathematics, 2007, 71:3, 629–655

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024