RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2006 Volume 70, Issue 4, Pages 209–224 (Mi im564)

This article is cited in 2 papers

Local extremal problems for bounded analytic functions without zeros

D. V. Prokhorov, S. V. Romanova

Saratov State University named after N. G. Chernyshevsky

Abstract: In the class $B(t)$, $t>0$, of all functions $f(z,t)=e^{-t}+c_1(t)z+c_2(t)z^2+\dots$ that are analytic in the unit disc $U$ and such that $0<|f(z,t)|<1$ in $U$, we obtain asymptotic estimates for the coefficients for small and sufficiently large $t>0$. We suggest an algorithm for determining those $t>0$ for which the canonical functions provide the local maximum of $\operatorname{Re}c_n(t)$ in $B(t)$. We describe the set of functionals $L(f)=\sum_{k=0}^n\lambda_kc_k$ for which the canonical functions provide the maximum of $\operatorname{Re}L(f)$ in $B(t)$ for small and large values of $t$. The proofs are based on optimization methods for solutions of control systems of differential equations.

UDC: 517.54

MSC: 30C45

Received: 11.11.2003
Revised: 21.10.2005

DOI: 10.4213/im564


 English version:
Izvestiya: Mathematics, 2006, 70:4, 841–856

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024