RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2007 Volume 71, Issue 1, Pages 17–54 (Mi im599)

This article is cited in 4 papers

The behaviour of solutions of elliptic inequalities that are non-linear with respect to the highest derivatives

A. A. Kon'kov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: This paper deals with non-negative solutions of the elliptic inequalities $\operatorname{div} A(x,Du)\ge F(x,u)$ in $\Omega$, where $A\colon\Omega\times\mathbb R^n\to\mathbb R^n$ and $F\colon\Omega\times[0,\infty)\to[0,\infty)$ are functions and $\Omega$ is an unbounded open subset of $\mathbb R^n$, $n\geqslant2$.

UDC: 517.9

MSC: 35J15, 35J25, 34A34, 34C10

Received: 06.10.2005

DOI: 10.4213/im599


 English version:
Izvestiya: Mathematics, 2007, 71:1, 15–51

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025