RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 2, Pages 141–150 (Mi im6133)

The feeble conjecture on the 2-adic regulator for some 2-extensions

L. V. Kuz'min

Russian Research Centre "Kurchatov Institute"

Abstract: For an algebraic number field $K$ that is a finite 2-extension of the CM-field $k$ with trivial Iwasawa invariant $\mu_2(k)$, we prove that its cyclotomic $\mathbb Z_\ell$-extension $K_\infty/K$ satisfies the feeble conjecture on the 2-adic regulator [1]. In particular, this conjecture holds for $K_\infty/K$ if $K$ is a 2-extension of a field $k$ that is Abelian over $\mathbb Q$. We also obtain other results in the same direction.

Keywords: cyclotomic $\mathbb Z_\ell$-extension, 2-adic regulator, 2-extension, Iwasawa invariants.

UDC: 511.236.3

MSC: 11S85, 11S25

Received: 29.11.2010

DOI: 10.4213/im6133


 English version:
Izvestiya: Mathematics, 2012, 76:2, 346–355

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024