RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2005 Volume 69, Issue 5, Pages 133–148 (Mi im657)

This article is cited in 56 papers

Pseudodifferential operators on ultrametric spaces and ultrametric wavelets

S. V. Kozyrev, A. Yu. Khrennikov


Abstract: We construct a wavelet analysis and spectral theory of pseudodifferential operators on general ultrametric spaces. Operators generalizing the Vladimirov operator of $p$-adic fractional differentiation are introduced. We construct a family of ultrametric wavelet bases in spaces of square-integrable complex-valued functions for a wide family of ultrametric spaces. We show that the pseudodifferential operators introduced are diagonal in these wavelet bases and compute the corresponding eigenvalues.

UDC: 517.58

MSC: 35S05, 47G10, 26E30

Received: 08.04.2004

DOI: 10.4213/im657


 English version:
Izvestiya: Mathematics, 2005, 69:5, 989–1003

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024