RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2005 Volume 69, Issue 5, Pages 149–168 (Mi im658)

This article is cited in 1 paper

On Stieltjes integrals and Parseval's equality for multiple trigonometric series

T. P. Lukashenko


Abstract: In this paper, it is proved that if a function $f$ from $\mathbb R^n$ to $\mathbb C$ is $2\pi$-periodic with respect to each variable and Lebesgue integrable on $T^n=[0,2\pi]^n$, a complex-valued additive segment function $\mathcal G$ is defined on all segments in $\mathbb R^n$ and is $2\pi$-periodic with respect to each variable, the point function $G$ corresponding to $\mathcal G$ is Lebesgue integrable on $T^n$, and the function $f$ is integrable with respect to $\overline{\mathcal G}$ in the Riemann–Stieltjes sense on all shifts of $T^n$, then Parseval's equality holds with the series not necessarily convergent, but summable by Riemann's method. Some results are also obtained on Parseval's equality for Fourier–Lebesgue–Stieltjes multiple trigonometric series.

UDC: 517.51

MSC: 28A15, 28A42, 40C05, 40G05, 42A20, 42A16, 42A24, 42A38, 42B05, 42C10, 28-01, 42-01, 42-02

Received: 28.10.2004

DOI: 10.4213/im658


 English version:
Izvestiya: Mathematics, 2005, 69:5, 1005–1024

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025