RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 3, Pages 203–224 (Mi im6594)

This article is cited in 1 paper

Negative-order moments for $L^p$-functionals of Wiener processes: exact asymptotics

V. R. Fatalov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We prove theorems on the exact asymptotics as $T \to \infty$ of the integrals $\mathsf{E}\bigl[\frac{1}{T}\!\int_0^T\!|\eta(t)|^pdt\bigr]^{-T}$, $p>0$, for two stochastic processes $\xi(t)$, the Wiener process and the Brownian bridge, as well as for their conditional versions. We also obtain a number of related results. We shall use the Laplace method for the occupation times of homogeneous Markov processes. We write the constants in our exact asymptotic formulae explicitly in terms of the minimal eigenvalue and corresponding eigenfunction for the Schrödinger operator with a potential of polynomial type.

Keywords: large deviations, occupaton time of Markov processes, Schrödinger operator, action functional, Fréchet differentiation.

UDC: 519.2

MSC: 60F10, 60J05, 60J65

Received: 28.12.2010

DOI: 10.4213/im6594


 English version:
Izvestiya: Mathematics, 2012, 76:3, 626–646

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025