RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2005 Volume 69, Issue 6, Pages 139–152 (Mi im670)

This article is cited in 7 papers

$C^m$-extension of subharmonic functions

P. V. Paramonov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Given $m\in(1,3)$ and any (Jordan) $B$-domain $D$ in $\mathbb R^2$, we prove that any function of class $C^m(\,\overline D\,)$ that is subharmonic in $D$ can be extended to a function of class $C^m$ that is subharmonic on the whole $\mathbb R^2$ and give an estimate of the $C^{m-1}$-norm of its gradient. The corresponding assertion for $m\in[0,1)\cup[3,+\infty)$ is false even for discs. These results also hold for balls $D$ in $\mathbb R^N$, $N\in\{3,4,\dots\}$. We also obtain some corollaries, including the corresponding assertions on the $\operatorname{Lip}^m$-extension of subharmonic functions.

UDC: 517.5

MSC: 31A05, 41A30

Received: 23.05.2005

DOI: 10.4213/im670


 English version:
Izvestiya: Mathematics, 2005, 69:6, 1211–1223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024