RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1996 Volume 60, Issue 2, Pages 3–20 (Mi im69)

This article is cited in 6 papers

Estimates for a uniform modulus of continuity of functions from symmetric spaces

E. I. Berezhnoi

Yaroslavl State University

Abstract: We prove a multidimensional “correctability” theorem of the Oskolkov type for a function given in $\mathbb R^n$ whereby a sharp quantitative estimate for the uniform modulus of continuity of a function on “large” sets is given if an estimate of the modulus of continuity of this function in a symmetric space is known. We show that an estimate of a uniform modulus of continuity depends only on the eigenfunction of the symmetric space.

UDC: 517.5

MSC: 26A15, 46E30

Received: 14.04.1992

DOI: 10.4213/im69


 English version:
Izvestiya: Mathematics, 1996, 60:2, 233–250

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025