RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2008 Volume 72, Issue 3, Pages 3–18 (Mi im696)

This article is cited in 11 papers

Holomorphic classification of four-dimensional surfaces in $\mathbb C^3$

V. K. Beloshapkaa, V. V. Ezhovb, G. Schmalzc

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b University of Adelaide
c University of New England

Abstract: We use the method of model surfaces to study real four-dimensional submanifolds of $\mathbb C^3$. We prove that the dimension of the holomorphic symmetry group of any germ of an analytic four-dimensional manifold does not exceed 5 if this dimension is finite. (There are only two exceptional cases of infinite dimension.) The envelope of holomorphy of the model surface is calculated. We construct a normal form for arbitrary germs and use it to give a holomorphic classification of completely non-degenerate germs. It is shown that the existence of a completely non-degenerate CR-structure imposes strong restrictions on the topological structure of the manifold. In particular, the four-sphere $S^4$ admits no completely non-degenerate embedding into a three-dimensional complex manifold.

UDC: 517.55+514.76

MSC: 32V40

Received: 30.04.2004
Revised: 02.03.2007

DOI: 10.4213/im696


 English version:
Izvestiya: Mathematics, 2008, 72:3, 413–427

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024