RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2006 Volume 70, Issue 5, Pages 97–122 (Mi im707)

This article is cited in 2 papers

A property of the $\ell$-adic logarithms of units of non-abelian local fields

L. V. Kuz'min

Russian Research Centre "Kurchatov Institute"

Abstract: We continue to examine the finite abelian $\ell$-groups ${\mathcal A}_n^{(p)}$ and ${\mathcal B}_n^{(p)}$, which were introduced in [7] to characterize the bilinear form $U(K_n)\times U(K_n)\to {\mathbb Q}_\ell$, $(x,y)\to {\operatorname{Sp}}_{K_n/{\mathbb Q}_\ell} (\log x\cdot\log y)$, where $K_n$ is an intermediate subfield of the cyclotomic ${\mathbb Z}_\ell$-extension $K_\infty/K$, $K$ is a finite extension of ${\mathbb Q}_\ell$, $U(K_n)$ is the group of units of $K_n$ and $\log$ is the $\ell$-adic logarithm. If $\ell\geqslant 3$ and $K$ is a non-abelian field, we prove that ${\mathcal A}_n^{(p)}\neq 0$ and ${\mathcal B}_n^{(p)}\neq0$ except in the case when $\ell=3$ and the $K$ is a quadratic extension of a cyclotomic field. We also investigate this exceptional case.

UDC: 519.4

MSC: 11S85, 11S25

Received: 27.04.2005

DOI: 10.4213/im707


 English version:
Izvestiya: Mathematics, 2006, 70:5, 949–974

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024