RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2007 Volume 71, Issue 6, Pages 3–28 (Mi im728)

This article is cited in 5 papers

Lubin–Tate extensions, an elementary approach

Yu. L. Ershov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We give an elementary proof of the assertion that the Lubin–Tate extension $L\geqslant K$ is an Abelian extension whose Galois group is isomorphic to $U_K/N_{L/K}(U_L)$ for arbitrary fields $K$ that have Henselian discrete valuation rings with finite residue fields. The term ‘elementary’ only means that the proofs are algebraic (that is, no transcedental methods are used [1], pp. 327, 332).

UDC: 510.53+512.52

MSC: 11S31, 14L05

Received: 20.12.2005

DOI: 10.4213/im728


 English version:
Izvestiya: Mathematics, 2007, 71:6, 1079–1104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025