RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2007 Volume 71, Issue 2, Pages 3–28 (Mi im732)

Formula-inaccessible cardinals and a characterization of all natural models of Zermelo–Fraenkel set theory

E. I. Buninaab, V. K. Zakharovab

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Centre for New Information Technologies, Moscow State University

Abstract: E. Zermelo (1930) and J. C. Sheperdson (1952) proved that a cumulative set $V_\alpha$ is a standard model of von Neumann–Bernays–Gödel set theory if and only if $\alpha=\varkappa+1$ for some inaccessible cardinal number $\varkappa$. The problem of a canonical form for all natural models of ZF theory turned out to be more complicated. Since the notion of a model of ZF theory cannot be defined by a finite set of formulae, we introduce a new notion of (strongly) formula-inaccessible cardinal number $\theta$ using a schema of formulae and its relativization on the set $V_\theta$, and prove a formula-analogue of the Zermelo–Sheperdson theorem giving a canonical form for all natural models of ZF theory.

UDC: 510.223

MSC: Primary 03B30; Secondary 00A30, 00A35, 08C05, 03E70

Received: 23.12.2005
Revised: 22.09.2006

DOI: 10.4213/im732


 English version:
Izvestiya: Mathematics, 2007, 71:2, 219–245

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025