RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 5, Pages 99–118 (Mi im7330)

This article is cited in 11 papers

Asymptotics of the eigenvalues of a discrete Schrödinger operator with zero-range potential

S. N. Lakaev, Sh. Yu. Kholmatov

A. Navoi Samarkand State University

Abstract: We consider a family of discrete Schrödinger operators $H_{\mu}(k)$, $k\in\mathfrak{G}\subset\mathbb{T}^d$. These operators are associated with the Hamiltonian ${H}_{\mu}$ of a system of two identical quantum particles (bosons) moving on the $d$-dimensional lattice $\mathbb{Z}^d$, $d\geqslant 3$, and interacting by means of a pairwise zero-range (contact) attractive potential $\mu>0$. It is proved that for any $k\in\mathfrak{G}$ there is a number $\mu(k)>0$ which is a threshold value of the coupling constant; for $\mu>\mu(k)$ the operator $H_{\mu}(k)$, $k\in\mathfrak{G}\subset\mathbb{T}^d$, has a unique eigenvalue $z(\mu, k)$ placed to the left of the essential spectrum. The asymptotic behaviour of $z(\mu, k)$ is found as $\mu\to\mu(k)$ and as $\mu\to+\infty$ and also as $k\to k^*$ for every value of the quasi-momentum $k^*=k^*(\mu)$ belonging to the manifold $\{k\in\mathfrak{G}\colon\mu(k)=\mu\}$, where $\mu\in\bigl(\inf_{k\in\mathfrak{G}}\mu(k),\sup_{k\in\mathfrak{G}}\mu(k)\bigr)$.

Keywords: discrete Schrödinger operator, Hamiltonian system of two particles, zero-range (contact) potential, eigenvalue, asymptotic behaviour.

UDC: 517.984.46

MSC: Primary 81Q10; Secondary 81U05

Received: 01.03.2011
Revised: 24.10.2011

DOI: 10.4213/im7330


 English version:
Izvestiya: Mathematics, 2012, 76:5, 946–966

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024