RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2007 Volume 71, Issue 1, Pages 61–78 (Mi im739)

This article is cited in 7 papers

On multiple Walsh series convergent over cubes

M. G. Plotnikov

M. V. Lomonosov Moscow State University

Abstract: We consider Walsh functions on the binary group $G$ and study uniqueness sets for $N$-fold multiple Walsh series under convergence over cubes (in other words, $U_{N,\mathrm{cube}}$-sets). We prove that every finite set is a $U_{N,\mathrm{cube}}$-set, construct examples of countable $U_{N,\mathrm{cube}}$-sets and non-empty perfect $U_{N,\mathrm{cube}}$-sets, and give an example of a $U_{N,\mathrm{cube}}$-set having the maximum possible Hausdorff dimension.

UDC: 517.518.3

MSC: 41A30, 42A44, 42C10, 42C15, 42C25, 43A46

Received: 28.12.2005

DOI: 10.4213/im739


 English version:
Izvestiya: Mathematics, 2007, 71:1, 57–73

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024