RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1996 Volume 60, Issue 2, Pages 159–194 (Mi im75)

This article is cited in 12 papers

Cycles on Abelian varieties and exceptional numbers

S. G. Tankeev

Vladimir Technical University

Abstract: The article considers a technique for proving the Hodge, Tate, and Mumford–Tate conjectures for a simple complex Abelian variety $J$ of non-exceptional dimension under the condition that $\operatorname{End}(J)\otimes \mathbb R\in\bigl\{\mathbb R,M_2(\mathbb R), \mathbb K,\mathbb C\bigr\}$, where $\mathbb K$ is the skew field of classical quaternions. The simple $2p$-dimensional Abelian varieties over a number field ($p$ is a prime, $p\geqslant 17$) are studied in detail. An application is given of Minkowski's theorem on unramified extensions of the field $\mathbb Q$ to the arithmetic and geometry of certain Abelian varieties over the field of rational numbers.

UDC: 512.6

MSC: Primary 14K15, 14C30; Secondary 17B10

Received: 25.04.1995

DOI: 10.4213/im75


 English version:
Izvestiya: Mathematics, 1996, 60:2, 391–424

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025