RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1994 Volume 58, Issue 5, Pages 26–52 (Mi im759)

Approximate functional equation for the product of two Dirichlet $L$-functions

S. A. Gritsenko


Abstract: An approximate functional is derived for $L(s,\chi_1)L(s,\chi_2)$, where $\chi_1$ and $\chi_2$ are primitive Dirichlet characters modulo $k_1$ and $k_2$, and also an approximate functional equation for an analogue of the Hardy–Selberg function.
If $s=1/2+it$, $k_1k_2\leqslant |t|^{1/9 -5\varepsilon}$, then the remainder terms in these formulas are bounded by $O(|t|^{-\varepsilon})$ as $|t|\to\infty$ (where $\varepsilon$ is an arbitrarily small positive number).

UDC: 511

MSC: Primary 11M06; Secondary 11M26, 11M41

Received: 24.02.1994


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 45:2, 255–280

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025