RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2012 Volume 76, Issue 5, Pages 119–142 (Mi im7826)

This article is cited in 3 papers

On the standard conjecture for complex 4-dimensional elliptic varieties

S. G. Tankeev

Vladimir State University

Abstract: We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of operators $\ast$ and $\Lambda$ of Hodge theory holds for every smooth complex projective model $X$ of the fibre product $X_1\times_C X_2$, where $X_1\to C$ is an elliptic surface over a smooth projective curve $C$ and $X_2\to C$ is a morphism of a smooth projective threefold onto $C$ such that one of the following conditions holds: a generic geometric fibre $X_{2s}$ is an Enriques surface; all fibres of the morphism $X_2\to C$ are smooth $\mathrm{K}3$-surfaces and the Hodge group $\operatorname{Hg}(X_{2s})$ of the generic geometric fibre $X_{2s}$ has no geometric simple factors of type $A_1$ (the assumption on the Hodge group holds automatically if the number $22-\operatorname{rank}\operatorname{NS}(X_{2s})$ is not divisible by 4).

Keywords: elliptic variety, standard conjecture of Lefschetz type, Enriques surface, $\mathrm{K}3$-surface, Hodge group, algebraic cycle.

UDC: 512.6

MSC: 14C25, 14D07, 14F25, 14J35

Received: 08.08.2011

DOI: 10.4213/im7826


 English version:
Izvestiya: Mathematics, 2012, 76:5, 967–990

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025