RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1994 Volume 58, Issue 3, Pages 103–126 (Mi im790)

This article is cited in 3 papers

Algebraic cycles on an abelian variety without complex multiplication

S. G. Tankeev

Vladimir State University

Abstract: We prove a theorem to the effect that if a natural number $d$ is not exceptional, then all $d$-dimensional abelian varieties without complex multiplication satisfy the Grothendieck version of the general Hodge conjecture. Exceptional numbers have density zero in the set of natural numbers. If $\operatorname{End}(J)=\mathbf Z$, $J$ is defined over a number field, and $\dim J=2p$, where $p$ is a prime number, $p\ne 2$ and $p\ne 5$, then the Mumford–Tate conjecture and the Tate conjecture on algebraic cycles hold for the variety $J$.

UDC: 512.6

MSC: 14C30, 14K22, 32J25

Received: 25.04.1993


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 44:3, 531–553

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024