RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2013 Volume 77, Issue 1, Pages 49–90 (Mi im7940)

Isometries of semi-orthogonal forms on a $\mathbb Z$-module of rank 3

S. A. Kuleshov


Abstract: We study the isometry groups of semi-orthogonal forms (that is, forms whose Gram matrix in some basis is upper triangular with ones on the diagonal) on a $\mathbb Z$-module of rank 3. Such forms have a discrete parameter: the height (the trace of the dualizing operator + 3). We prove that the isometry group is either $\mathbb Z$ or $\mathbb Z_2\times\mathbb Z$, list all the cases when it is a direct product and describe the generator of order 2 in that case. We also describe a generator of infinite order for many particular values of the height.

Keywords: quadratic forms on modules over rings.

UDC: 511.515+512.64

MSC: 11E08, 14D20, 15A63

Received: 30.11.2011
Revised: 10.04.2012

DOI: 10.4213/im7940


 English version:
Izvestiya: Mathematics, 2013, 77:1, 44–86

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024