RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1994 Volume 58, Issue 3, Pages 196–210 (Mi im796)

This article is cited in 3 papers

Conditions for finite existence time of maximal tubes and bands in Lorentzian warped products

V. A. Klyachin, V. M. Miklyukov

Volgograd State University

Abstract: Let $H$ be an $n$-dimensional Riemannian manifold, $\delta>0$ a smooth function on $H$, and $\widehat R$ the interval $(-\infty, +\infty)$ furnished with a negative definite metric $(-dt^2)$. Let $H\times_\delta\widehat R$ be the corresponding Lorentzian warped product [1, § 2.6]. We investigate the spacelike tubes and bands $\mathscr M$ with zero mean curvature in $\Omega\subset H$. It is shown that if $\mathscr M$ projects one-to-one onto some domain $\Omega\subset H$ of $\delta$-hyperbolic type, then $\mathscr M$ has a finite existence time. Examples are considered of maximal tubes and bands in Schwarzschild and de Sitter spaces. Geometric criteria are obtained for $\Omega$ to be of $\delta$-hyperbolic type.

UDC: 517.97

MSC: Primary 53C40, 53C50; Secondary 83E30

Received: 26.06.1992


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 44:3, 629–643

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025