RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2013 Volume 77, Issue 2, Pages 53–96 (Mi im7960)

This article is cited in 35 papers

Relaxation self-oscillations in Hopfield networks with delay

S. D. Glyzina, A. Yu. Kolesova, N. Kh. Rozovb

a P. G. Demidov Yaroslavl State University
b M. V. Lomonosov Moscow State University

Abstract: We consider two singularly perturbed non-linear systems of differential-difference equations with delay; one of them is a mathematical model of a single Hopfield neuron and the other simulates the functioning of a circular network of three or more neurons connected unidirectionally. We study the problems of existence, asymptotic behaviour, and stability for these systems of relaxation periodic motions.

Keywords: differential-difference equations, Hopfield neuron networks, relaxation cycle, stability, buffer property.

UDC: 519.624.2

MSC: Primary 34C05; Secondary 34C25, 34C26

Received: 06.02.2012
Revised: 20.04.2012

DOI: 10.4213/im7960


 English version:
Izvestiya: Mathematics, 2013, 77:2, 271–312

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024