RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 1, Pages 65–98 (Mi im7962)

This article is cited in 12 papers

Explicit and probabilistic constructions of distance graphs with small clique numbers and large chromatic numbers

A. B. Kupavskii

Moscow Institute of Physics and Technology

Abstract: We study distance graphs with exponentially large chromatic numbers and without $k$-cliques, that is, complete subgraphs of size $k$. Explicit constructions of such graphs use vectors in the integer lattice. For a large class of graphs we find a sharp threshold for containing a $k$-clique. This enables us to improve the lower bounds for the maximum of the chromatic numbers of such graphs. We give a new probabilistic approach to the construction of distance graphs without $k$-cliques, and this yields better lower bounds for the maximum of the chromatic numbers for large $k$.

Keywords: distance graph, chromatic number, clique number, Nelson problem.

UDC: 519.174.7+519.176+519.175.4

MSC: 52C10, 05C10, 05C15, 05C69, 05D10, 05C50

Received: 08.02.2012
Revised: 12.07.2012

DOI: 10.4213/im7962


 English version:
Izvestiya: Mathematics, 2014, 78:1, 59–89

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025