RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2013 Volume 77, Issue 3, Pages 109–138 (Mi im7966)

This article is cited in 22 papers

Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds

M. Michelia, P. W. Michorb, D. Mumfordc

a Université René Descartes
b University of Vienna
c Brown University

Abstract: Given a finite-dimensional manifold $N$, the group $\operatorname{Diff}_{\mathcal S}(N)$ of diffeomorphisms diffeomorphism of $N$ which decrease suitably rapidly to the identity, acts on the manifold $B(M,N)$ of submanifolds of $N$ of diffeomorphism-type $M$, where $M$ is a compact manifold with $\operatorname{dim} M<\operatorname{dim} N$. Given the right-invariant weak Riemannian metric on $\operatorname{Diff}_{\mathcal S}(N)$ induced by a quite general operator $L\colon \mathfrak X_{\mathcal S}(N)\to \Gamma(T^*N\otimes\operatorname{vol}(N))$, we consider the induced weak Riemannian metric on $B(M,N)$ and compute its geodesics and sectional curvature. To do this, we derive a covariant formula for the curvature in finite and infinite dimensions, we show how it makes O'Neill's formula very transparent, and we finally use it to compute the sectional curvature on $B(M,N)$.
Bibliography: 15 titles.

Keywords: robust infinite-dimensional weak Riemannian manifolds, curvature in terms of the cometric, right-invariant Sobolev metrics on diffeomorphism groups, O'Neill's formula, manifold of submanifolds.

UDC: 514.83+517.988.24

MSC: 58B20, 58D15, 37K65

Received: 16.02.2012

Language: English

DOI: 10.4213/im7966


 English version:
Izvestiya: Mathematics, 2013, 77:3, 541–570

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024