RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 1, Pages 167–180 (Mi im7988)

On the structure of Artin $L$-functions

S. A. Stepanov

A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow

Abstract: We consider the generating Artin $L$-function
$$ L(z)=L(z,f)=\exp\Bigl(\,\sum_{\nu=1}^{\infty}\frac{T_\nu}{\nu} z^\nu\Bigr) $$
for the character sums
$$ T_\nu=\sum_{x_1,\dots,x_n\in\mathbb F_{q^\nu}}\psi_\nu(f(x_1,\dots,x_n)), $$
where $\mathbb F_q$ is a finite field, $\mathbb F_{q^\nu}$ is a finite extension of $\mathbb F_q$, $\psi_\nu(\alpha)$ is a non-trivial additive character of $\mathbb F_{q^\nu}$, and $f\in\mathbb F_q[x_1,\dots,x_n]$ is a polynomial of degree $d\geqslant 2$, and give an elementary proof of Bombieri's conjecture on the algebraic structure of $L(z)$ in the case $n=2$.

Keywords: finite fields, sums of characters for polynomials in many variables, Artin $L$-function, Bombieri's conjecture, polarized symmetric polynomials in many variables, Waring's theorem on symmetric polynomials.

UDC: 512.754

MSC: Primary 11T23; Secondary 11R42, 11M41, 11S40

Received: 05.04.2012
Revised: 07.12.2012

DOI: 10.4213/im7988


 English version:
Izvestiya: Mathematics, 2014, 78:1, 154–168

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025