RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2006 Volume 70, Issue 5, Pages 179–198 (Mi im799)

This article is cited in 5 papers

Müntz–Szász type approximation in direct products of spaces

A. M. Sedletskii

M. V. Lomonosov Moscow State University

Abstract: We consider the problem of completeness of the system of exponentials $\exp\{-\lambda_nt\}$, $\operatorname{Re}\lambda_n>0$, in direct products $E=E_1\times E_2$ of the spaces $E_1=E_1(0,1)$ and $E_2=E_2(1,\infty)$ of functions defined on $(0,1)$ and $(1,\infty)$, respectively. We describe rather broad classes of spaces $E_1$ and $E_2$ such that the well-known condition of Szász is necessary for the completeness of the above system in $E$ and sufficient for this completeness.

UDC: 517.5

MSC: 42C15

Received: 31.05.2004

DOI: 10.4213/im799


 English version:
Izvestiya: Mathematics, 2006, 70:5, 1031–1050

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024