RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1994 Volume 58, Issue 2, Pages 3–18 (Mi im800)

This article is cited in 26 papers

Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain

A. V. Babin


Abstract: In a domain $\omega\times\mathbf R\subset\mathbf R^{n+1}$ the elliptic system
\begin{equation} \partial^2_tu+\gamma\partial_tu+a\Delta u-a_0u-f(u)=g \tag{1} \end{equation}
is considered with a Neumann boundary condition. $U_+(u_0)$ denotes the set of solutions $u(x,t)$ of this system defined for $t\geqslant 0$, equal to $u_0$ for $t=0$, and bounded in $L_2(\omega)$ uniformly for $t\geqslant 0$.
In the space $H^{3/2}$ of initial data $u_0$ there arises the semigroup $\{S_t\}$, $S_tu_0=\{\upsilon\colon\upsilon=u(t),\ u\in U_+(u_0)\}$, wherein to the point $u_0$ there is assigned the set $S_tu_0$, i.e., $S_t$ is a multivalued mapping. In the paper it is proved that $\{S_t\}$ has a global attractor $\mathfrak A$. A theorem is proved that
$$ \mathfrak A=\{\upsilon\colon\upsilon=u(t),\ u\in V,\ t\in\mathbf R\}, $$
where $V$ is the set of solutions of the elliptic system, defined and bounded for $t\in\mathbf R$.

UDC: 517.95

MSC: Primary 35J55; Secondary 34C35, 47D06

Received: 19.10.1992


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 44:2, 207–223

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024