RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 1, Pages 181–214 (Mi im8041)

This article is cited in 4 papers

On the standard conjecture for complex 4-dimensional elliptic varieties and compactifications of Néron minimal models

S. G. Tankeev

Vladimir State University

Abstract: We prove that the Grothendieck standard conjecture $B(X)$ of Lefschetz type on the algebraicity of operators $*$ and $\Lambda$ of Hodge theory holds for every smooth complex projective model $X$ of the fibre product $X_1\times_CX_2$, where $X_1\to C$ is an elliptic surface over a smooth projective curve $C$ and $X_2\to C$ is a family of K3 surfaces with semistable degenerations of rational type such that $\operatorname{rank}\operatorname{NS}(X_{2s})\ne18$ for a generic geometric fibre $X_{2s}$. We also show that $B(X)$ holds for any smooth projective compactification $X$ of the Néron minimal model of an Abelian scheme of relative dimension $3$ over an affine curve provided that the generic scheme fibre is an absolutely simple Abelian variety with reductions of multiplicative type at all infinite places.

Keywords: elliptic variety, standard conjecture of Lefschetz type, K3 surface, semistable degeneration of rational type, algebraic cycle, Néron minimal model, reduction of multiplicative type.

UDC: 512.6

MSC: 14C25, 14D07, 14F25, 14J35

Received: 07.08.2012

DOI: 10.4213/im8041


 English version:
Izvestiya: Mathematics, 2014, 78:1, 169–200

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025