RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 4, Pages 123–174 (Mi im8068)

This article is cited in 4 papers

On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain

A. A. Kon'kov

M. V. Lomonosov Moscow State University

Abstract: We consider non-negative solutions of quasi-linear elliptic inequalities $\operatorname{div}A(x,Du)\geqslant0$ in $\Omega_{R_0,R_1}$, $0\leqslant R_0<R_1\le\infty$, where $\Omega_{R_0,R_1}=\{x\in\Omega\colon R_0<|x|<R_1\}$, $\Omega\subset{\mathbb R}^n$ ($n\geqslant2$) is a non-empty open set, and the function $A\colon\Omega_{R_0,R_1}\times{\mathbb R}^n\to{\mathbb R}^n$ satisfies the ellipticity conditions $C_1|\xi|^p\le\xi A(x,\xi)$, $|A(x,\xi)|\le C_2|\xi|^{p-1}$, $C_1,C_2>0$, $p>1$, for almost all $x\in\Omega_{R_0,R_1}$ and all $\xi\in{\mathbb R}^n$. Our bounds for solutions take the geometry of $\Omega$ into account.

Keywords: non-linear elliptic operators, unbounded domains, capacity.

UDC: 517.91

MSC: 35R45, 35B09, 35B51, 35J87

Received: 15.11.2012
Revised: 22.08.2013

DOI: 10.4213/im8068


 English version:
Izvestiya: Mathematics, 2014, 78:4, 758–808

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025