RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 3, Pages 111–134 (Mi im8085)

On $\ell$-adic logarithms of Gauss sums

L. V. Kuz'min

National Research Centre "Kurchatov Institute"

Abstract: For the Gauss sum $S(\chi)$ corresponding to a character $\chi$ of order $\ell^md$ of the multiplicative group of a finite field $\mathbb F_q$ of characteristic $p$, we obtain an approximate formula for the $\ell$-adic logarithm of $S(\chi)$. We construct a special basis in the group of logarithms and define modulo $\ell^m$ the coefficients of $\log_\ell(S(\chi))$ relative to this basis (modulo $\ell^{m-1}$ if $\ell=2$). These coefficients are defined in terms of power residues of some cyclotomic numbers at the places over $p$.

Keywords: Gauss sums, cyclotomic units, Iwasawa theory, reciprocity laws.

UDC: 519.4

MSC: 11R18, 11R23, 11T24

Received: 26.12.2012
Revised: 08.07.2013

DOI: 10.4213/im8085


 English version:
Izvestiya: Mathematics, 2014, 78:3, 531–553

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024