RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1994 Volume 58, Issue 2, Pages 196–205 (Mi im810)

This article is cited in 11 papers

On orbit connectedness, orbit convexity and envelopes of holomorphy

Xiang-Yu Zhouab

a Steklov Math. Institute, Academy of Sciences, Moscow, Russian
b Institute of math., Academia Sinica, Beijing, P.R. China

Abstract: We are concerned with the univalence and discription of the envelope of holomorphy $E(D)$ for a domain $D$ having a compact Lie group action. Our main result is the following:
Let $X$ be a holomorphic Stein $K^C$-manifold, $D\subset X$ a $K$-invariant orbit connected domain. Then $E(D)$ is schlicht and orbit convex if and only if $E(K^C\cdot D)$ is schlicht. Moreover, in this case, $E(K^C\cdot D)=K^C\cdot e(d)$.

UDC: 517.55

MSC: 32D10, 32A07

Received: 18.01.1992

Language: English


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1995, 44:2, 403–413

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024