RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 6, Pages 103–140 (Mi im8145)

This article is cited in 9 papers

The Cartan equivalence problem for Levi-non-degenerate real hypersurfaces $M^3\subset\mathbb C^2$

J. Merkera, M. Sabzevarib

a Université Paris-Sud, Orsay cedex
b Shahrekord University, Iran

Abstract: We develop the Cartan equivalence problem for Levi-non-degenerate $\mathcal C^6$-smooth real hypersurfaces $M^3$ in $\mathbb C^2$ in great detail, performing all computations effectively in terms of local graphing functions. In particular, we present explicitly the unique (complex) essential invariant $\mathfrak{J}$ of the problem. Comparison with our previous joint results [1] shows that the Cartan–Tanaka geometry of these real hypersurfaces perfectly matches their biholomorphic equivalence.

Keywords: CR-manifolds, Levi non-degeneracy, essential torsions, $G$-structures, curvature tensor.

UDC: 514.76

MSC: 32V40, 53C10

Received: 05.07.2013

DOI: 10.4213/im8145


 English version:
Izvestiya: Mathematics, 2014, 78:6, 1158–1194

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024