RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2015 Volume 79, Issue 1, Pages 115–152 (Mi im8177)

This article is cited in 2 papers

On a new type of $\ell$-adic regulator for algebraic number fields (the $\ell$-adic regulator without logarithms)

L. V. Kuz'min

National Research Centre "Kurchatov Institute"

Abstract: For an algebraic number field $K$ such that a prime $\ell$ splits completely in $K$, we define a regulator $\mathfrak R_\ell(K)\in\mathbb Z_\ell$ that characterizes the subgroup of universal norms from the cyclotomic $\mathbb Z_\ell$-extension of $K$ in the completed group of $S$-units of $K$, where $S$ consists of all prime divisors of $\ell$. We prove that the inequality $\mathfrak R_\ell(K)\ne0$ follows from the $\ell$-adic Schanuel conjecture and holds for some Abelian extensions of imaginary quadratic fields. We study the connection between the regulator $\mathfrak R_\ell(K)$ and the feeble conjecture on the $\ell$-adic regulator, and define analogues of the Gross regulator.

Keywords: $\ell$-adic regulator, $S$-units, global universal norm, Schanuel conjecture, Iwasawa theory.

UDC: 511.236.3

MSC: 11R23, 11R18

Received: 16.10.2013

DOI: 10.4213/im8177


 English version:
Izvestiya: Mathematics, 2015, 79:1, 109–144

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024