RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2014 Volume 78, Issue 6, Pages 83–102 (Mi im8182)

This article is cited in 6 papers

On the best methods for recovering derivatives in Sobolev classes

G. G. Magaril-Il'yaevab, K. Yu. Osipenkoacb

a M. V. Lomonosov Moscow State University
b A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
c Moscow State Aviation Technological University, Moscow

Abstract: We construct the best (optimal) methods for recovering derivatives of functions in generalized Sobolev classes of functions on $\mathbb R^d$ provided that for every such function we know (exactly or approximately) its Fourier transform on an arbitrary measurable set $A\subset\mathbb R^d$. In both cases we construct families of optimal methods. These methods use only part of the information about the Fourier transform, and this part is subject to some filtration. We consider the problem of finding the best set for the recovery of a given derivative among all sets of a fixed measure.

Keywords: optimal recovery, Sobolev class, extremal problem, Fourier transform.

UDC: 517.984.64

MSC: 26D15, 42B10, 49K35, 90C47

Received: 25.10.2013

DOI: 10.4213/im8182


 English version:
Izvestiya: Mathematics, 2014, 78:6, 1138–1157

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024