RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2015 Volume 79, Issue 1, Pages 21–42 (Mi im8215)

This article is cited in 21 papers

Distribution of real algebraic numbers of arbitrary degree in short intervals

V. I. Bernika, F. Götzeb

a Institute of Mathematics of the National Academy of Sciences of Belarus
b Bielefeld University, Department of Mathematics

Abstract: We consider real algebraic numbers $\alpha$ of degree $\operatorname{deg}\alpha=n$ and height $H=H(\alpha)$. There are intervals $I\subset\mathbb{R}$ of length $|I|$ whose interiors contain no real algebraic numbers $\alpha$ of any degree with $H(\alpha)<\frac12|I|^{-1}$. We prove that one can always find a constant $c_1=c_1(n)$ such that if $Q$ is a positive integer and $Q>c_1|I|^{-1}$, then the interior of $I$ contains at least $c_2(n)Q^{n+1}|I|$ real algebraic numbers $\alpha$ with $\operatorname{deg}\alpha=n$ and $H(\alpha)\le Q$. We use this result to solve a problem of Bugeaud on the regularity of the set of real algebraic numbers in short intervals.

Keywords: algebraic numbers, regular systems.

UDC: 511.42

MSC: 11J83, 11K55

Received: 31.01.2014
Revised: 09.10.2015

DOI: 10.4213/im8215


 English version:
Izvestiya: Mathematics, 2015, 79:1, 18–39

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024