RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2015 Volume 79, Issue 3, Pages 203–224 (Mi im8234)

This article is cited in 2 papers

On the Brauer group of an arithmetic model of a hyperkähler variety over a number field

S. G. Tankeev

Vladimir State University

Abstract: We prove Artin's conjecture on the finiteness of the Brauer group for an arithmetic model of a hyperkähler variety $V$ over a number field $k\hookrightarrow\mathbb C$ provided that $b_2(V\otimes_k\mathbb C)>3$. We show that the Brauer group of an arithmetic model of a simply connected Calabi–Yau variety over a number field is finite. We also prove that if the $l$-adic Tate conjecture on divisors holds for a certain smooth projective variety $V$ over a field $k$ of arbitrary characteristic $\operatorname{char}(k)\ne l$, then the group $\operatorname{Br}'(V\otimes_k k^{\mathrm{s}})^{\operatorname{Gal}(k^{\mathrm{s}}/k)}(l)$ is finite independently of the semisimplicity of the continuous $l$-adic representation of the Galois group $\operatorname{Gal}(k^{\mathrm{s}}/k)$ on the space $H^2_{\text{\'et}}(V\otimes_kk^{\mathrm{s}},\mathbb Q_l(1))$.

Keywords: hyperkähler variety, Calabi–Yau variety, arithmetic model, Brauer group, Artin's conjecture, K3-surface, Abelian surface, Hilbert scheme of points, generalized Kummer variety, Hilbert modular surface.

UDC: 512.7

MSC: 14F22, 14K05

Received: 14.03.2014
Revised: 24.11.2014

DOI: 10.4213/im8234


 English version:
Izvestiya: Mathematics, 2015, 79:3, 623–644

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025