RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2015 Volume 79, Issue 2, Pages 77–100 (Mi im8253)

This article is cited in 12 papers

A strengthening of a theorem of Bourgain and Kontorovich. III

I. D. Kan

Moscow Aviation Institute (State University of Aerospace Technologies)

Abstract: We prove that the set of positive integers contains a positive proportion of denominators of the finite continued fractions all of whose partial quotients belong to the alphabet $\{1,2,3,4,10\}$. The corresponding theorem was previousy known only for the alphabet $\{1,2,3,4,5\}$ and for alphabets of larger cardinality.

Keywords: continued fraction, continuant, trigonometric sum, Zaremba's conjecture.

UDC: 511.321+511.31

MSC: Primary 11J70; Secondary 11A55, 11L07

Received: 16.05.2014

DOI: 10.4213/im8253


 English version:
Izvestiya: Mathematics, 2015, 79:2, 288–310

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024