RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2015 Volume 79, Issue 2, Pages 181–204 (Mi im8256)

This article is cited in 17 papers

The spectral theory of a functional-difference operator in conformal field theory

L. A. Takhtadzhyanab, L. D. Faddeevcd

a Euler International Mathematical Institute, St. Petersburg
b Department of Mathematics, Stony Brook University
c Saint Petersburg State University
d St. Petersburg Department of V. A. Steklov Institute of Mathematics of the Russian Academy of Sciences

Abstract: We consider the functional-difference operator $H=U+U^{-1}+V$, where $U$ and $V$ are the Weyl self-adjoint operators satisfying the relation $UV=q^{2}VU$, $q=e^{\pi i\tau}$, $\tau>0$. The operator $H$ has applications in the conformal field theory and representation theory of quantum groups. Using the modular quantum dilogarithm (a $q$-deformation of the Euler dilogarithm), we define the scattering solution and Jost solutions, derive an explicit formula for the resolvent of the self-adjoint operator $H$ on the Hilbert space $L^{2}(\mathbb R)$, and prove the eigenfunction expansion theorem. This theorem is a $q$-deformation of the well-known Kontorovich–Lebedev transform in the theory of special functions. We also present a formulation of the scattering theory for $H$.

Keywords: modular quantum dilogarithm, Weyl operators,functional-difference operator, Schrödinger operator, Fourier transform, Casorati determinant, Sokhotski–Plemelj formula, scattering solution, Jost solutions, resolvent of an operator, eigenfunction expansion, Kontorovich–Lebedev transform, scattering theory, scattering operator.

UDC: 517.581+517.965+517.984

MSC: 33D05, 34K06, 39A70

Received: 03.06.2014

DOI: 10.4213/im8256


 English version:
Izvestiya: Mathematics, 2015, 79:2, 388–410

Bibliographic databases:
ArXiv: 1408.0307


© Steklov Math. Inst. of RAS, 2025