RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2015 Volume 79, Issue 5, Pages 3–38 (Mi im8294)

This article is cited in 5 papers

On a class of random perturbations of the hierarchical Laplacian

A. D. Bendikova, A. A. Grigor'yanb, S. A. Molchanovc, G. P. Samorodnitskyd

a Institute of Mathematics, Wrocław University
b Bielefeld University, Department of Mathematics
c Department of Mathematics, University of North Carolina Charlotte
d School of Operations Research and Information Engineering, Cornell University

Abstract: Let $(X,d)$ be a locally compact separable ultrametric space. Given a measure $m$ on $X$ and a function $C(B)$ defined on the set $B$ of all balls of positive measure of $X$, we consider the hierarchical Laplacian $L=L_{C}$. The operator $L$ acts on $L^{2}(X,m)$. It is essentially self-adjoint and has a pure point spectrum. By choosing a family $\{\varepsilon (B)\}$ of independent identically distributed random variables, we define the perturbed function $C(B,\omega)$ and the perturbed hierarchical Laplacian $L^{\omega }=L_{C(\omega)}$. We study the arithmetic means $\bar{\lambda }(\omega)$ of the eigenvalues of $L^{\omega }$. Under some mild assumptions the normalized arithmetic means $( \bar{\lambda }-\mathbb{E}\bar{\lambda })/\sigma [\bar{\lambda }]$ converge to $N(0,1)$ in distribution. We also give examples when the normal convergence fails. We prove the existence of an integrated density of states. Introducing an empirical point process $N^{\omega }$ for the eigenvalues of $L^{\omega }$ and assuming that the density of states exists and is continuous, we prove that the finite-dimensional distributions of $N^{\omega }$ converge to those of the Poisson point process. As an example we consider random perturbations of the Vladimirov operator acting on $L^{2}(X,m)$, where $X=\mathbb{Q}_{p}$ is the ring of $p$-adic numbers and $m$ is the Haar measure.

Keywords: ultrametric measure space, field of $p$-adic numbers, hierarchical Laplacian, fractional derivative, Vladimirov Laplacian, point spectrum, integrated density of states, Bernoulli convolutions, Erdős problem, point process, Poisson convergence.

UDC: 517.983+517.1+519.2

MSC: 05C05, 47S10, 60J25, 81Q10

Received: 21.08.2014
Revised: 01.12.2014

DOI: 10.4213/im8294


 English version:
Izvestiya: Mathematics, 2015, 79:5, 859–893

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024