RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2015 Volume 79, Issue 3, Pages 87–130 (Mi im8299)

This article is cited in 6 papers

Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat–Tits buildings

Yu. A. Neretinabc

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
b University of Vienna
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: We construct $p$-adic analogues of operator colligations and their characteristic functions. Consider a $p$-adic group $\mathbf G=\mathrm{GL}(\alpha+k\infty,\mathbb Q_p)$, a subgroup $L=\mathrm O(k\infty,\mathbb Z_p)$ of $\mathbf G$ and a subgroup $\mathbf K=\mathrm O(\infty,\mathbb Z_p)$ which is diagonally embedded in $L$. We show that the space $\Gamma=\mathbf K\setminus\mathbf G/\mathbf K$ of double cosets admits the structure of a semigroup and acts naturally on the space of $\mathbf K$-fixed vectors of any unitary representation of $\mathbf G$. With each double coset we associate a ‘characteristic function’ that sends a certain Bruhat–Tits building to another building (the buildings are finite-dimensional) in such a way that the image of the distinguished boundary lies in the distinguished boundary. The second building admits the structure of a (Nazarov) semigroup, and the product in $\Gamma$ corresponds to the pointwise product of characteristic functions.

Keywords: Bruhat–Tits buildings, lattices, Weil representation, characteristic functions, simplicial maps.

UDC: 512.625.5+512.741.5+512.816.4

MSC: 22E50, 51E24

Received: 21.09.2014

DOI: 10.4213/im8299


 English version:
Izvestiya: Mathematics, 2015, 79:3, 512–553

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024