RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2016 Volume 80, Issue 1, Pages 27–54 (Mi im8343)

This article is cited in 9 papers

Proof of the gamma conjecture for Fano 3-folds of Picard rank 1

V. V. Golysheva, D. Zagierbc

a Institute for Information Trnsmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b Max Planck Institute for Mathematics
c International Centre for Theoretical Physics

Abstract: We verify the (first) gamma conjecture, which relates the gamma class of a Fano variety to the asymptotics at infinity of the Frobenius solutions of its associated quantum differential equation, for all 17 of the deformation classes of Fano 3-folds of rank 1. This involves computing the corresponding limits (‘Frobenius limits’) for the Picard–Fuchs differential equations of Apéry type associated by mirror symmetry with the Fano families, and is achieved using two methods, one combinatorial and the other using the modular properties of the differential equations. The gamma conjecture for Fano 3-folds always contains a rational multiple of the number $\zeta(3)$. We present numerical evidence suggesting that higher Frobenius limits of Apéry-like differential equations may be related to multiple zeta values.

Keywords: gamma class, gamma conjecture, Picard–Fuchs equation, Fano 3-fold.

UDC: 512.776+515.178.1+517.926.4

MSC: 11B33, 11F37, 14J45, 14J81, 14N35

Received: 25.01.2015
Revised: 09.06.2015

DOI: 10.4213/im8343


 English version:
Izvestiya: Mathematics, 2016, 80:1, 24–49

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025