RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2016 Volume 80, Issue 6, Pages 65–91 (Mi im8373)

This article is cited in 13 papers

Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series

M. G. Grigoryana, K. A. Navasardyanb

a Physical and Mathematical Faculty of Yerevan State University
b Yerevan State University, Faculty of Informatics and Applied Mathematics

Abstract: We prove the existence of a function $g(x)\in L^1[0,1]$ with monotone decreasing Fourier–Walsh coefficients $\{c_k(g)\}_{k=0}^\infty\downarrow$ which is universal in $L^p[0,1]$, $p\geqslant1$, in the sense of modification with respect to the signs of the Fourier coefficients for the Walsh system. In other words, for every function $f\in L^p[0;1]$ and every $\varepsilon>0$ one can find a function $\widetilde f\in L^p[0;1]$ such that the measure $|\{x\in[0;1]\colon f(x)=\widetilde f(x)\}|$ is greater than $1-\varepsilon$, the Fourier series of $\widetilde f(x)$ in the Walsh system converges to $\widetilde f(x)$ in the $L^p[0,1]$-norm and $|c_k(\widetilde f)|=c_k(g)$, $k\in\operatorname{Spec}(\widetilde f)$. We also prove that for every $\varepsilon$, $0<\varepsilon<1$, one can find a measurable set $E\subset [0,1]$ of measure $|E|>1-\varepsilon$ and a function $g\in L^1[0;1]$ with $0<c_{k+1}(g)<c_k(g)$, $k=0,1,2,\dots$, such that for every function $f\in L^1[0,1]$ there is a function $\widetilde f\in L^1[0,1]$ with the following properties: $\widetilde f$ coincides with $f$ on $E$, the Fourier–Walsh series of $\widetilde f(x)$ converges to $\widetilde f(x)$ in the norm of $L^1[0,1]$ and the absolute values of all terms in the sequence of the Fourier–Walsh coefficients of the newly obtained function satisfy $|c_k(\widetilde f)|=c_k(g)$, $k=0,1,2,\dots$ .

Keywords: Fourier coefficients, Walsh system, convergence in the $L^1$-norm.

UDC: 517.51

MSC: 26D15, 42C10, 42C20

Received: 30.03.2015
Revised: 29.07.2015

DOI: 10.4213/im8373


 English version:
Izvestiya: Mathematics, 2016, 80:6, 1057–1083

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024