RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2016 Volume 80, Issue 4, Pages 65–122 (Mi im8408)

This article is cited in 5 papers

Representations of affine superalgebras and mock theta functions. III

V. G. Kaca, M. Wakimotob

a Department of Mathematics, Massachusetts Institute of Technology
b 12-4 Karato-Rokkoudai, Kita-ku, Kobe 651-1334, Japan

Abstract: We study modular invariance of normalized supercharacters of tame integrable modules over an affine Lie superalgebra, associated to an arbitrary basic Lie superalgebra $\mathfrak g$. For this we develop a several step modification process of multivariable mock theta functions, where at each step a Zwegers' type ‘modifier’ is used. We show that the span of the resulting modified normalized supercharacters is $\operatorname{SL}_2(\mathbb Z)$-invariant, with the transformation matrix equal, in the case the Killing form on $\mathfrak g$ is non-degenerate, to that for the basic defect 0 subalgebra $\mathfrak g^!$ of $\mathfrak g$, orthogonal to a maximal isotropic set of roots of $\mathfrak g$.

Keywords: basic finite-dimensional Lie superalgebra, affine Lie superalgebra, tame integrable modules, normalized supercharacters, mock theta function, modification process, modular invariance.

UDC: 512.554

MSC: 17B67, 33E05

Received: 06.05.2015
Revised: 21.10.2015

Language: English

DOI: 10.4213/im8408


 English version:
Izvestiya: Mathematics, 2016, 80:4, 693–750

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024