RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1993 Volume 57, Issue 5, Pages 106–126 (Mi im841)

This article is cited in 4 papers

Topology of the space of nondegenerate curves

M. Z. Shapiro


Abstract: A curve on a sphere or on a projective space is called nondegenerate if it has a nondegenerate moving frame at every point. The number of homotopy classes of closed nondegenerate curves immersed in the sphere or projective space is computed. In the case of the sphere $S^n$, this turns out to be 4 for odd $n\geqslant 3$ and 6 for even $n\geqslant 2$; in the case of the projective space $\mathbf P^n$, 10 for odd $n\geqslant 3$ and 3 for even $n\geqslant 2$.

UDC: 517.926.4

MSC: Primary 58D10; Secondary 58F07

Received: 09.03.1992


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 43:2, 291–310

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025