RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2016 Volume 80, Issue 6, Pages 274–293 (Mi im8412)

This article is cited in 5 papers

Special Bohr–Sommerfeld Lagrangian submanifolds

N. A. Tyurinabc

a Joint Institute for Nuclear Research, Dubna, Moscow region
b State University – Higher School of Economics
c Moscow State University of Railway Communications

Abstract: We introduce a new notion in symplectic geometry, that of speciality for Lagrangian submanifolds satisfying the Bohr–Sommerfeld condition. We show that it enables one to construct finite-dimensional moduli spaces of special Bohr–Sommerfeld Lagrangian submanifolds with respect to any ample line bundle on an algebraic variety with a Hodge metric regarded as the symplectic form. This construction can be used to study mirror symmetry.

Keywords: symplectic manifold, Lagrangian cycle, Bohr–Sommerfeld condition, prequantization data, algebraic variety, speciality condition.

UDC: 512.7+514.7+514.8

MSC: 53D12, 53D37, 53D50

Received: 19.05.2015
Revised: 29.09.2015

DOI: 10.4213/im8412


 English version:
Izvestiya: Mathematics, 2016, 80:6, 1257–1274

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025