This article is cited in
29 papers
On approximation of functions on the sphere
Kh. P. Rustamov
Abstract:
Let
$S^n$ be the unit sphere in
$\mathbf R^{n+1}$ (
$n\geqslant 1$) with center at the origin of coordinates, and let
$\|*\|_p$ be the norm in the space
$L_p(S^n)$,
$1\leqslant p\leqslant\infty$ $(L_\infty(S^n)\equiv C(S^n))$. Problems posed by Butzer, Johnen [4], and Wehrens (Approximationstheorie auf der Einheitskugel in
$R^3$. Legendre-Transformationsmethoden und Anwendungen, Forschungsberichte Landes Nordrhein-Westfalen No. 3090, 1981) are solved; namely, a direct theorem on best approximation is proved for the modulus of smoothness of arbitrary (fractional) order
$r$ $(r>0)$
$$
\omega_r(f;\tau)_p\colon=\sup_{0<t\leqslant\tau}\Big\|(E-\operatorname{sh}_t)^{r/2}f\Big\|_p,\qquad 0<\tau<\pi,
$$
where
$\operatorname{sh}_t$ is the shift operator on the sphere,
$$
(\operatorname{sh}_tf)(\Theta)=\frac{\Gamma (n/2)}{2\pi^{n/2}(\sin t)^{n-1}}\int_{\Theta\cdot \mu=\cos t}f(\mu)\,dt(\mu),\qquad 0<t<\pi,
$$
and its equivalence to the
$K$-functional is proved. Special cases of the results established were known from work of Kushnirenko, Butzer, and Johnen, Lofstrom and Peetre, Pawelke, Lizorkin and Nikol'skii, Kalyabin, and others.
UDC:
517.518.13
MSC: Primary
41A50; Secondary
41A27,
33C55 Received: 10.02.1992