RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 1993 Volume 57, Issue 5, Pages 127–148 (Mi im842)

This article is cited in 29 papers

On approximation of functions on the sphere

Kh. P. Rustamov


Abstract: Let $S^n$ be the unit sphere in $\mathbf R^{n+1}$ ($n\geqslant 1$) with center at the origin of coordinates, and let $\|*\|_p$ be the norm in the space $L_p(S^n)$, $1\leqslant p\leqslant\infty$ $(L_\infty(S^n)\equiv C(S^n))$. Problems posed by Butzer, Johnen [4], and Wehrens (Approximationstheorie auf der Einheitskugel in $R^3$. Legendre-Transformationsmethoden und Anwendungen, Forschungsberichte Landes Nordrhein-Westfalen No. 3090, 1981) are solved; namely, a direct theorem on best approximation is proved for the modulus of smoothness of arbitrary (fractional) order $r$ $(r>0)$
$$ \omega_r(f;\tau)_p\colon=\sup_{0<t\leqslant\tau}\Big\|(E-\operatorname{sh}_t)^{r/2}f\Big\|_p,\qquad 0<\tau<\pi, $$
where $\operatorname{sh}_t$ is the shift operator on the sphere,
$$ (\operatorname{sh}_tf)(\Theta)=\frac{\Gamma (n/2)}{2\pi^{n/2}(\sin t)^{n-1}}\int_{\Theta\cdot \mu=\cos t}f(\mu)\,dt(\mu),\qquad 0<t<\pi, $$
and its equivalence to the $K$-functional is proved. Special cases of the results established were known from work of Kushnirenko, Butzer, and Johnen, Lofstrom and Peetre, Pawelke, Lizorkin and Nikol'skii, Kalyabin, and others.

UDC: 517.518.13

MSC: Primary 41A50; Secondary 41A27, 33C55

Received: 10.02.1992


 English version:
Russian Academy of Sciences. Izvestiya Mathematics, 1994, 43:2, 311–329

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024