RUS  ENG
Full version
JOURNALS // Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya // Archive

Izv. RAN. Ser. Mat., 2017 Volume 81, Issue 4, Pages 167–230 (Mi im8438)

This article is cited in 2 papers

A criterion for semiampleness

V. V. Shokurov

Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into a polarized pair and all fine subdiagrams which are closed under inclusions and under skrepas have a polarized colimit. Such diagrams are called sobors, and their arrows are inclusions and skrepas. The main application is a criterion for the semiampleness of a nef invertible sheaf on a complete algebraic space in terms of a sobor.

Keywords: sobor, skrepa, big, colimit, nef, semiampleness.

UDC: 512.76

MSC: 14C20, 14E30

Received: 12.08.2015

DOI: 10.4213/im8438


 English version:
Izvestiya: Mathematics, 2017, 81:4, 827–887

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025